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ABSTRACT
It is always very difficult to efficiently and accurately solve a systemof differ-
ential equations coupledwithmoving free boundaries, while such a system
has been widely applied to describe many physical/biological phenomena
such as the dynamics of spreading population. The main purpose of this
paper is to introduce efficient numerical methods within a general frame-
work for solving such systems with moving free boundaries. The major
numerical challenge is to track the moving free boundaries, especially for
high spatial dimensions. To overcome this, a front tracking framework cou-
pled with implicit solver is first introduced for the 2D model with radial
symmetry. For the general 2D model, a level set approach is employed to
more efficiently treat complicated topological changes. The accuracy and
order of convergence for the proposed methods are discussed, and the
numerical simulations agree well with theoretical results.
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1. Introduction

In this paper, we consider reaction–diffusion equations over a changing domain of the form

∂U
∂t

− D�U = f (U) for x ∈ �(t), t > 0; U = 0 for x ∈ ∂ �(t), t > 0. (1)

The nonlinear function f (U) is assumed to be a C1 function satisfying f (0) = 0, and in the literature,
it is often taken to be the logistic function f (U) = U(a − bU) with positive constants a and b. In
the rest of this paper, we will take this logistic function as an example to demonstrate the numerical
methods.

The evolution of the moving domain �(t) ⊂ R
N or rather its boundary ∂�(t) is determined by

the one phase Stefan condition which, in the case ∂�(t) is a C1 manifold in R
N , can be described as

follows:

Any point x ∈ ∂�(t) moves with velocity μ|∇xU(t, x)|n(x), where n(x) is the unit outward normal
of �(t) at x, and μ is a given positive constant.

The moving boundary ∂�(t) is generally called the ‘free boundary’, and it is well known that, in
general, its smoothness is not guaranteed, even if the initial function u(0, x) and initial domain �(0)
are both smooth; see, for example [10], where a weak solution setting is introduced for the general

CONTACT Xinfeng Liu xfliu@math.sc.edu Department of Mathematics, University of South Carolina, Columbia, SC
29208, USA

© 2019 Informa UK Limited, trading as Taylor & Francis Group

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/00207160.2019.1599868&domain=pdf&date_stamp=2019-04-04
mailto:xfliu@math.sc.edu


2 S. LIU ET AL.

situation of this free boundary problem. Such a free boundary problem was first introduced in [11]
in one space dimension, as a model for the spreading of an invading or new species with population
density U(t, x) whose spreading front is represented by the free boundary.

In [12], the regularity and long-time behaviour of ∂�(t) and u(t, x) are studied, and it is shown
that a spreading-vanishing dichotomy holds: either �(t) stays bounded (i.e. is contained in some
fixed ball in R

N) for all t> 0, and in such a case U(t, x) → 0 as t → ∞ uniformly in x ∈ �(t), or
�(t) converges to R

N , with ∂�(t) approximating a moving sphere enlarging to infinity as t → ∞.
Moreover, in the latter case, for all large t, the free boundary ∂�(t) is a smooth closed manifold
without boundary.

If f (U) ≡ 0, then this problem reduces to the classical Stefan problem, which has been extensively
studied theoretically (see, e.g. [3] and the references therein). Other theoretical studies of related free
boundary problems can be found in [2] and the references therein.

In contrast, very few numerical methods have been developed to solve such free boundary prob-
lems. In general, it is always difficult to efficiently and accurately handle the moving boundaries. To
efficiently handle the moving boundaries, level set methods [13,25,29,30,34,35] and front tracking
methods [19,27,33,36] are two popular numerical approaches. One distinct feature of front track-
ing [8,15–17,20,32] is using a pure Lagrangian approach to explicitly track locations of interfaces, but
it is difficult to handle topological bifurcations in high dimensions, while the level set method can
efficiently overcome such difficulties. The level set method has been successfully applied to solve the
classical Stefan problem [4,6,7,13,14,24,26] and the references therein. In this paper, wewill introduce
a front-tracking framework and a front-fixing framework to solve system (3)–(6) for a 2Dmodel with
radial symmetry, and a level set approach is employed for the general 2D model.

It is not easy to check the accuracy of the level set method. In this paper, we do it by applying the
level set method to a 2D problem with radial symmetry, for which it is also possible to use the front-
tracking method. Our numerical test shows that the numerical results obtained by the two methods
agree well. The accuracy of the front-tracking method is checked and compared with the front-fixing
method for 2D radially symmetric models, which indicates that they are reliably accurate numerical
schemes. In addition, our numerical simulations correlate nicely with theoretical results.

The rest of the paper is organized in the following way. In Section 2, the front-tracking approach
and front-fixing approach are introduced separately for a two-dimensional case with radial symme-
try (3)–(6), and the two methods are also compared with each other. In Section 3, a level set method
is discussed for a more general two-dimensional case. In Section 4, numerical examples are per-
formed to show the efficiency, accuracy and consistency for these different approaches. Finally, a brief
conclusion is drawn in Section 5.

2. Numerical methods for a 2Dmodel with radial symmetry

To solve the 2D diffusive logistic model in polar coordinates, the system can be written as

∂U
∂t

− D
(

∂2U
∂r2

+ 1
r

∂U
∂r

+ 1
r2

∂2U
∂2θ

)
= U(a − bU), t > 0, 0 ≤ θ ≤ 2π , r > 0, (2)

where (r cos θ , r sin θ) ∈ �(t).
We assume that the environment and the solution are radially symmetric, i.e. we set the initial

domain �0 as a disk, the initial function U0(x) as radially symmetric, the moving boundary ∂�(t)
as thus a circle whose radius we denote byH(t) and the solutionU(t, r, θ) = U(t, r), the 2D diffusive
logistic model with radial symmetry can be written as a 1D diffusive logistic model

∂U
∂t

− D
(

∂2U
∂r2

+ 1
r

∂U
∂r

)
= U(a − bU), t > 0, 0 < r < H(t). (3)



INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS 3

together with the boundary conditions

∂U
∂r

(t, 0) = 0, U(t,H(t)) = 0, t > 0, (4)

the Stefan condition

H′(t) = −μ
∂U
∂r

(t,H(t)), t > 0, (5)

and the initial conditions

H(0) = H0, U(0, r) = U0(r), 0 ≤ r ≤ H(0). (6)

2.1. Front-fixingmethod for the 2D diffusive logistic model with radial symmetry

Here we extend the ideas of Piqueras et al. [28] for 1D case to the 2D system with radial symmetry.
Let us transform the 1D diffusive logistic model (3)–(6) into a problem with a fixed domain [0, 1].
Under the Landau transformation [9,18]

z(t, r) = r
H(t)

, W(t, z) = U(t, r), (7)

moving front problem (3)–(6) reduces to

G(t)
∂W
∂t

− D
∂2W
∂z2

−
(
D
z

+ zG′(t)
2

)
∂W
∂z

= G(t)W(a − bW), t > 0, 0 < z < 1, (8)

where

G(t) = H2(t), t ≥ 0. (9)

Boundary conditions (4) and Stefan condition (5) take the form:

∂W
∂z

(t, 0) = 0, W(t, 1) = 0, t > 0, (10)

and

G′(t) = −2μ
∂W
∂z

(t, 1), t > 0, (11)

respectively, while initial conditions (6) become

G(0) = H2
0 , W(0, z) = W0(z) = U0(zH0), 0 ≤ z ≤ 1. (12)

Conditions (6) for the initial function U0(r) are translated toW0(z) as follows:

W0(z) ∈ C2([0, 1]), W′
0(0) = W0(1) = 0, W0(z) > 0, 0 ≤ z < 1. (13)

After the transformation, the new problem is to solve nonlinear parabolic partial differential equa-
tions (8) in the unbounded fixed domain (0,∞) × [0, 1] for the variables (t, z). Let us consider
the step size discretization k = �t, h = �z = 1/M, and the mesh points (tn, zj), with tn = kn, n ≥
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0, zj = jh, 0 ≤ j ≤ M and M is the total number of the subintervals of [0, 1]. Let us denote the
approximate value ofW(tn, zj) at the mesh point (tn, zj),

wn
j ≈ W(tn, zj), (14)

and let gn be the approximation of G(tn). Let us consider the forward approximation of the time
derivatives,

wn+1
j − wn

j

k
≈ ∂W

∂t
(tn, zj),

gn+1 − gn

k
≈ G′(tn), (15)

and the central approximation of the spatial derivatives,

wn
j+1 − wn

j−1

2h
≈ ∂W

∂z
(tn, zj),

wn
j−1 − 2wn

j + wn
j+1

h2
≈ ∂2W

∂z2
(tn, zj). (16)

From (15) and (16), Equation (8) is approximated by

gn
wn+1
j − wn

j

k
− D

wn
j−1 − 2wn

j + wn
j+1

h2
−

(
D
zj

+ zj
2
gn+1 − gn

k

) wn
j+1 − wn

j−1

2h

= gnwn
j (a − bwn

j ), n ≥ 0, 0 < j ≤ M − 1. (17)

For the point at j= 0, the value wn
−1 is eliminated from the second-order discretization of boundary

condition (10) and (13),

wn
1 − wn

−1
2h

= 0, wn
M = 0, n ≥ 0. (18)

Transformed Stefan condition (11) is discretized using first-order forward approximation for G′(t)
and three points backward spatial approximation of ∂W

∂z (t, 1):

gn+1 − gn

k
= −μ

h
(3wn

M − 4wn
M−1 + wn

M−2), n ≥ 0. (19)

to preserve accuracy of order O(k) + O(h2).
Finally, we have

wn+1
0 =

(
1 − 2Dk

gnh2
+ k(a − bwn

0)

)
wn
0 + 2

Dk
gnh2

wn
1 ,

wn+1
j = anj w

n
j−1 + bnj w

n
j + cnj w

n
j+1, n ≥ 0, 0 < j ≤ M − 1,

wn+1
M = 0.

(20)

where the coefficients are given by

anj = Dk
gnh2

− Dk
2hzjgn

− zjμk(4wn
M−1 − wn

M−2)

4h2gn
,

bnj = 1 − 2Dk
gnh2

+ k(a − bwn
j ),

cnj = Dk
gnh2

+ Dk
2hzjgn

+ zjμk(4wn
M−1 − wn

M−2)

4h2gn
.

(21)
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Figure 1. Case 1. ri ≤ Hn < ri+1.

2.2. Front-trackingmethod for the 2Dmodel with radial symmetry

Let us consider moving front problem (3)–(6) in a fixed domain [0,T] × [0, L], i.e. we want to find
the distribution of the population in the region [0, L] up to time T. Set the step size discretization h =
�r = L/M, k = �t = 0.1(�r)2/D, which satisfies the CFL condition, and the mesh points (tn, ri),
with tn = kn, n ≥ 0, ri = ih, 0 ≤ i ≤ M and M is the total number of subintervals of [0, L]. Let us
denote the approximate value of U(tn, ri) at the mesh point (tn, ri) by

uni ≈ U(tn, ri), (22)

and let Hn be the approximation of H(tn).
Step 1: Track the position of the moving front.
According to the Stefan condition (5), we use the central approximation of the spatial derivatives

to approximate ∂U
∂r (t,H(t)):

1.When ri ≤ Hn < ri+1, i = 2, 3 . . .M − 1 as shown in Figure 1, denoting d = Hn−ri
h , we first con-

sider the symmetric point of ri−1 with respect to the positionHn, which is denoted by r̃i−1. Specifically
whenHn = ri, r̃i−1 = ri+1. We use the Lagrange extrapolation method to construct a polynomial PL
from the value of d, h, uni−2, u

n
i−1 andH

n [14]. At r̃i−1, we use the value of PL at r̃i−1 instead of u(r̃i−1),

∂U
∂r

(tn,Hn) ≈ PL(r̃i−1) − uni−1
2(1 + d)h

, i = 2, 3, . . . ,M − 1. (23)

Remark: The most challenging part of the front tracking method is the evaluation of ∂U
∂r (t,H(t)),

where H(t) is the moving boundary. It is difficult to find a uniform finite difference approxima-
tion of ∂U

∂r (t,H(t)) with high order accuracy because the distance of the moving point Hn to the
set of grid points {ri} does not have a uniform positive lower bound. The numerical methods of
evaluating ∂U

∂r (t,H(t)) in such a case need to be carefully designed to avoid singularity caused by
Hn being very close to some grid point ri. Evaluating ∂U

∂r (t,H(t)) by combining the evaluation of
∂U
∂r (t, ri) and ∂U

∂r (t, ri+1) can avoid such singularity; however, it destroys the accuracy when com-
bined with the process of updating U(t, r). In (23), we combine the classical central approximation
of the spatial derivatives and the Lagrange extrapolation method to evaluate ∂U

∂r (t,H(t)) to ensure
second-order accuracy in space. For example, when ri < Hn < ri+1, we evaluate ∂U

∂r (t,H(t)) on ri−1
and r̃i−1 instead of ri and r̃i to avoid singularity when Hn is very close to ri, and when Hn = ri, (23)
becomes

∂U
∂r

(tn,Hn) ≈ PL(ri+1) − uni−1
2h

, i = 2, 3, . . . ,M − 1.

2. When r0 < Hn ≤ r1, the central approximation of the spatial derivatives to approximate
∂U
∂r (t,H(t)) involves the fictitious value un−1 at the point (tn,−h). The value un−1 is eliminated from
the discretization of boundary condition (4),

un1 − un−1
2h

= 0

which means that un−1 = un1 = 0, we can see that all the values of uni on the grid points are equal to 0
except un0 . The simulation should stop here indicating that a more refined mesh is needed.
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Figure 2. Case 3: r1 < Hn < r2.

3. When r1 < Hn < r2 as depicted in Figure 2, denoting d = Hn−r1
h . Let us first consider the sym-

metric point of r0 with respect to the positionHn, which is denoted by r̃0. Then we consider the value
of un−1 = un1 and use the Lagrange extrapolation method to construct polynomial PL from the value
of h, d, un−1, u

n
0 and Hn. At r̃0, we use the value of PL at r̃0 instead of u(r̃0),

4. When Hn = rM , it means that the spreading of the populations goes out of the computational
domain [0, L], and the simulation should stop here indicating for a larger computational domain.

Remark: In system (3)–(6), cases 2 and 3 will not happen, since the front H(t) is increasing in time
t. However, the front tracking method possesses preferable adaptability to track various moving front
conditions, such as those used in [1], where the front need not be increasing in time, and therefore
cases 2 and 3 indeed occur.

Step 2: Update the value of U(tn+1, ri).
1. When ri = Hn+1, we know that U(tn+1, ri) = 0. Let un+1

j = 0, for j = i, i + 1, . . .M. We con-
sider the central approximation of the spatial derivatives at xj, for j = 0, 1, 2, . . . , i − 1, where U is
updated by the backward Euler method in time

un+1
0 − un0

k
= D

2un+1
1 − 2un+1

0
h2

+ aun+1
0 − b(un+1

0 )2,

un+1
j − unj

k
= D

(
un+1
j−1 − 2un+1

j + un+1
j+1

h2
+

un+1
j+1 − un+1

j−1

2jh2

)
+ aun+1

j − b(un+1
j )2, j = 1, . . . i − 1.

(24)
Then we use the Picard Iteration (or Newton Iteration) to solve nonlinear system (24).

2.When ri < Hn+1 < ri+1, denotingR = Hn+1−ri
h . Letun+1

j = 0, for j = i + 1, . . .M.We consider
the central approximation of the spatial derivatives at xj, for j = 0, 1, 2, . . . , i. For updating un+1

i , we
use the Lagrange extrapolation to construct polynomial PL from the value of h, R, un+1

i−2 , u
n+1
i−1 and

Hn+1. At ri+1, we use the value of PL at ri+1 instead of un+1
i+1 . U is updated by the backward Euler

method in time

un+1
0 − un0

k
= D

2un+1
1 − 2un+1

0
h2

+ aun+1
0 − b(un+1

0 )2,

un+1
j − unj

k
= D

(
un+1
j−1 − 2un+1

j + un+1
j+1

h2
+

un+1
j+1 − un+1

j−1

2jh2

)
+ aun+1

j − b(un+1
j )2, j = 1, . . . i − 1,

un+1
i − uni

k
= D

(
un+1
i−1 − 2un+1

i + PL(xi+1)

h2
+ PL(xi+1) − un+1

i−1
2ih2

)
+ aun+1

i − b(un+1
i )2.

(25)
Picard Iteration (or Newton Iteration) will be applied to solve nonlinear system (25).
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3. Level set method for the general 2D diffusive logistic model

The general 2D diffusive logistic model for the density of population of the invasive speciesU(t, x, y)
depending on time t and spatial variables (x, y) has the form

∂U
∂t

− D
(

∂2U
∂x2

+ ∂2U
∂y2

)
= U(a − bU), t > 0, (x, y) ∈ �(t),

U(t, ∂�(t)) = 0, t > 0,

v(t, x, y) = μ|∇U(t, x, y)|n(t, x, y) = −μ∇U(t, x, y), t > 0, (x, y) ∈ ∂�(t),

�(0) = �0, U(0, x, y) = U0(x, y), (x, y) ∈ �0.

(26)

where v(t, x, y) andn(t, x, y) are, respectively, the velocity vector of the boundary point (x, y) ∈ ∂�(t),
and the unit outward normal of �(t) at (x, y) ∈ ∂�(t). The initial function U0(x, y) is assumed to
have the following properties:

U0 ∈ C2(�0), U0 > 0 in �0, U0 = 0 on ∂�0. (27)

In what follows, to simplify notations, we will use τ(t) to denote the unknown moving boundary
∂�(t). The density of population is distributed in the domain �(t),D > 0 is the dispersal rate and
the positive parameters a and b are the intrinsic growth rate and the intra-specific competition rate,
respectively. The parameter μ > 0 is the proportionality constant between the population gradient
at the front and the speed of the moving boundary.

Following the ideas of Chen et al. [6] and Fedkiw and Osher [13], we construct a level set function
φ, then move φ with the correct speed v at the front and followed by updating u(t, x, y). The new
position of the front is stored implicitly in φ. We extend the level set approach to effectively capture
the front at each new time step and a finite difference discretization of five-point stencils coupled with
a forward Euler scheme to solve the system everywhere away from the front. The inter-extrapolation
strategy and boundary conditions will be employed for the points near fronts. With this approach,
we avoid the difficulties that arise from explicitly tracking the front and thus increase the efficiency
to deal with complex interfacial geometries.

Step 1: Construct level set equation φ(t, x, y) and velocity function V(t, x, y).
We introduce a level set function φ. Initially, φ is set to equal to the signed distance function from

the front as follows:

φ(0, x, y) =

⎧⎪⎨
⎪⎩

+d, x ∈ �c
0,

0, x ∈ τ0,
−d x ∈ �0,

(28)

where d is the distance from the front.
We want to construct a speed function V(t, x, y) over the whole computational domain, which

governs the motion of φ by

φt + V|∇φ| = 0. (29)

The basic idea behind introducing the level set function φ(t, x, y) is that the front is equal to the zero
level set of φ at any time, i.e.

τ(t) = {(x, y) ∈ �(t) : φ(t, x, y) = 0}.
As the front moves at the velocity field v, we construct the speed function V(t, x, y) over the whole
computational domain in the following way:

The set τ1(t) := {(x, y) : φ(t, x, y) = 0} coincides with τ(t) for all t> 0, or equivalently (29) yields
the same equation for the velocity vector v1(t, x, y) at (x, y) ∈ τ1(t) whenever τ1(t) coincides with
τ(t) at some t ≥ 0 (note that they coincide at time t= 0 by assumption).
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Indeed, if τ1(t) = τ(t), from φ(t, τ1(t)) = 0 and φ(t, x, y) < 0 for (x, y) lying inside τ1(t), we
deduce

φt + ∇φ · v1 = 0, n = ∇φ/|∇φ| for (x, y) ∈ τ1(t) = τ(t), (30)

and v1 has the same direction as n, the unit outward normal of τ1(t) = τ(t), i.e.

v1 = V1 n for some V1 = V1(t, x, y) > 0, (x, y) ∈ τ1(t) = τ(t).

These relations yield

φt + V1 |∇φ| = 0 on τ(t).

Combining this with (29) we obtain

V1 = V for (x, y) ∈ τ(t).

Therefore

v1 = V n for (x, y) ∈ τ(t).

By the Stefan condition, we have

v = V n for (x, y) ∈ τ(t),

and thus, we have proved

v1 = v for (x, y) ∈ τ(t)

as wanted.
Therefore, we get the velocity function over the computational domain

V(t, x, y) = μ|∇U(t, x, y)|, (31)

which of course moves φ with the correct speed at the front, so that τ(t)will always coincide with the
zero level set of φ at time t.

Step 2: Update φ(t, x, y).
According to (29)–(31), the equation governing the level set function turns into

φt = μ∇U(t, x, y) · ∇φ. (32)

The approximation to ∇U at τ(t) is based upon approximations to the derivatives of U in four coor-
dinate directions to cut down on grid orientation effects; here we use the standard x,y Cartesian
coordinates and the 45o-rotated coordinates η and ζ . We extend each approximation to a derivative
of U away from the front by the following four advection equations:

u1t + S(φφx)u1x = 0, (33)

u2t + S(φφy)u2y = 0, (34)

u3t + S(φφη)u3η = 0, (35)

u4t + S(φφζ )u4ζ = 0, (36)

where u1 = ∂U/∂x, u2 = ∂U/∂y, u3 = ∂U/∂η and u4 = ∂U/∂ζ on τ(t). Here S is equal to the sign
function.

Equation (33) through Equation (36) continuously extend u1, u2, u3, u4 away from the front by
advecting these fields in the proper upwind direction, and they are used to define V away from τ(t).
Since φ is zero on τ(t), these equations will not degrade the value of V on the front.
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Choosing the computational domain as a square box [−L
2 ,

L
2 ] × [−L

2 ,
L
2 ], we discretize the

domain by setting �x = �y = h. The time step taken in the following sections is �t, which sat-
isfy the CFL condition. Let uni,j ≈ U(n�t,−L

2 + (i − 1)h,−L
2 + (j − 1)h),φn

i,j ≈ φ(n�t,−L
2 + (i −

1)h,−L
2 + (j − 1)h). We use a first-order upwind scheme to discretize (33)–(36). For example, the

discretization of (33) is as follows:

if Si,j(φφx) > 0, then u1(new)
i,j = u1(old)i,j − cfl ∗ (u1(old)i,j − u1(old)i−1,j ),

if Si,j(φφx) < 0, then u1(new)
i,j = u1(old)i,j + cfl ∗ (u1(old)i+1,j − u1(old)i,j ),

with cfl= 0.5.
Here, the time step of this discretization satisfies �tadvect/h ≤ 1. According to [31], the time step

of the advection function �textend is not necessarily related to the main time step �t.
From (32), we end up solving for the right-hand side of the equation

φt = μ

2
(u1i,j(φx)i,j + u2i,j(φy)i,j + u3i,j(φη)i,j + u4i,j(φζ )i,j), (37)

where spatial first derivatives of φ are approximated by a second-order ENO scheme. We update φ

by solving (37) with a third-order Runge-Kutta scheme [6].
Step 3: Reinitialize φ to be a signed distance function for one time step.
The level set function will cease to be an exact distance function even after one time step. In order

to keep the accuracy of n and V , we need to avoid having steep or flat gradients developed in φ. To
avoid these numerical difficulties, a good choice is to re-initialize the level set function to be an exact
distance function from the evolving front τ(t) at each time step.

We use the reinitialization scheme of Sussman et al. [31] to reinitialize φ by

φt = S(φ0)(1 − |∇φ|), (38)

where φ(0, x, y) = φ0(x, y) and S again denotes the sign function. The sign function S is smoothed
by the equation

Sε(φ0) = φ0√
φ0

2 + ε2
(39)

to avoid numerical difficulties while implemented [31].
By iterating Equation (38) to a steady state, the original position of the front will not change, but

at points away from τ(t), φ will be evolved into a distance function.
Step 4: Update U(t, x, y).
After reinitializing φ to be very close to an exact signed distance function from τ(t) in Step 3, next

we update U(t, x, y) in the following three cases:

• For points away from the front, which means the nearby four grid points are all inside the domain
�(t), we solve the Reaction–diffusion equation by combining with the forward Euler method and
five-point stencil scheme.For example, suppose we update U(t, x, y) at the grid point (i, j), where
φi,j < 0, φi+1,j < 0, φi−1,j < 0, φi,j+1 < 0 and φi,j−1 < 0, we updateU(t, x, y) at the grid point (i, j)
as

un+1
i,j − uni,j

�t
− D

uni+1,j + uni−1,j − 4uni,j + uni,j−1 + uni,j+1

h2
= uni,j(a − buni,j). (40)

• For points near the front τ(t), some special care should be taken. We employ an interpolation
scheme to approximate the spatial double derivative of U. Since φ is an exact distance function
after reinitialization, we can effectively capture the front by using the level set function φ. For
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example, we use one-sided different sign of φ to incorporate the distances between a point on
the front and grid points neighbouring it in either the vertical or horizontal direction.Suppose
Xf = (xf ,−L

2 + (j − 1)h) ∈ τ(t) for some integer j, we consider the two grid points (i, j) and (i +
1, j) which border Xf in x-direction, i.e. xi ≤ xf ≤ xi+1. Assuming φi,j < 0, φi−1,j < 0, φi,j−1 < 0,
φi,j+1 < 0 and φi+1,j > 0, we introduce

xf − xi = rh = − φi,j

φi+1,j − φi,j
h

and use uni,j, u
n
i−1,j, u

n
i−2,j, r and U(n�t, xf ,−L

2 + (j − 1)h) = 0 to construct interpolating polyno-
mial P. When updating un+1

i,j , once again we use a standard five-point stencil combining with the
forward Euler method, here we replace uni+1,j by P(−L

2 + ih), i.e.

un+1
i,j − uni,j

�t
− D

uni−1,j + uni,j−1 − 4uni,j + P(−L
2 + ih) + uni,j+1

h2
= uni,j(a − buni,j). (41)

For the case when the front interacts with y-axis, we use the same process in the y-direction. In
special case, where we cannot find enough grid points inside the domain to construct interpolating
polynomial P, we employ the nearby gird points and intersect points of the front and x- and y-axes
to construct quadratic polynomial or straight line as the interpolating polynomial P to update U.
For the extreme configuration, where there are only intersect points of the front and x- and y-axes
near the grid point, we update U = 0 at the grid point.

• If a grid point lies on the front, we set the value U = 0 at that point according to the boundary
condition.

Step 5: Repeat Step 2 through Step 5 to update φ and U for the next time step.

4. Numerical experiments

4.1. Numerical tests of a 2D problemwith radial symmetry: front-fixingmethod and
front-trackingmethod

4.1.1. Verification of convergence rates
For the convergence rates, we compare the numerical approximation to the exact solution. Let’s
take the convergence of u in space, for example. However, the numerical approximation depends
on the choice of the grid size (h). For instance, we denote the numerical approximation by ũh. If the
numerical method is of order p, it means that there is a number C independent of h such that

|ũh − u| ≤ Chp,

at least for sufficiently small h. Often the error |ũh − u| depends smoothly on h. Then, we have

|ũh − u| = Chp + O(hp+1).

To evaluate the convergence order p, we need to check the sequence

log |ũh − u| = log |C| + p log(h) + O(h),

for h1, h2, . . ., and fit it to a linear function of log(h). A standard way to calculate p is to divide h by
half every time and look at the ratios of the errors |u − ũh| and |u − ũh/2|, i.e.

|ũh − u|
|ũh/2 − u| = Chp + O(hp+1)

C(h/2)p + O((h/2)p+1)
= 2p + O(h).
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Table 1. Convergence analysis for the front-fixing method for the 2D model with radial symmetry.

Nx × Nt L2error Order L∞error Order

Accuracy test of U of the front-fixing method
21×5e4 6.20e−03 8.70e−03
41×5e4 1.50e−03 2.01 2.20e−03 2.00
81×5e4 4.00e−04 2.07 5.00e−04 2.07
161×5e4 1.01e−04 2.32 1.00e−04 2.32
321×5e4 Reference

Accuracy test of H of the front-fixing method
21×5e4 1.10e−03 1.90e−03
41×5e4 3.00e−04 2.00 5e−05 1.98
81×5e4 1.00e−04 2.05 1e−05 2.05
161×5e4 2.01e−05 2.31 2.02e−06 2.31
321×5e4 Reference

Table 2. Convergence analysis for the front-tracking method for the 2D model with radial symmetry.

Nx × Nt L2error Order L∞error Order

Accuracy test of U of the front-tracking method
71×2e04 6.50e−04 2.71e−03
141×2e04 1.42e−04 2.19 5.96e−04 2.19
281×2e04 3.24e−05 2.14 1.35e−04 2.14
561×2e04 6.27e−06 2.37 2.61e−05 2.37
1121×2e04 Reference

Accuracy test of H of the front-tracking method
71×2e04 3.02e−02 5.01e−03
141×2e04 6.75e−03 2.16 1.07e−03 2.23
281×2e04 1.54e−03 2.14 2.42e−04 2.14
561×2e04 3.01e−04 2.35 4.67e−05 2.37
1121×2e04 Reference

Hence

log2

∣∣∣∣ ũh − u
ũh/2 − u

∣∣∣∣ = p + O(h).

4.1.2. Convergence test of front-fixingmethod
We test the front-fixing method for solving the 2D logistic diffusion model with radial symme-
try (2)–(6) with parameters (D,μ, a, b,H0) = (0.4, 1, 1, 1, 1) and U0 = cos(πr

2 ).
In Table 1, the error (both L2 and L∞) and the order of accuracy in space of the front-fixing

method are examined, with final time T= 0.5. The error is computed by the difference of the numer-
ical solution with the exact solution. For all the examples below when the exact solution is not given,
the solution with a fine resolution will be considered as reference or ‘exact’ solution. As expected, a
second-order convergence in space can be observed.

4.1.3. Convergence test of the front-trackingmethod
We consider the 2D logistic diffusion model with radial symmetry (2)–(6) with parameters
(D,μ, a, b,H0) = (0.4, 10, 1, 1, 0.5) and U0 = cos(πr

2 ). The system is used to test the front-tracking
method.

In Table 2, the error (both L2 and L∞) and the order of convergence in space to the solution of
the front-tracking method is examined, with final time T= 0.1. Again second-order convergence in
space can be observed.
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Figure 3. Front-tracking method vs. front-fixing method for the 2D model with radial symmetry.

4.1.4. The comparison of front-trackingwith front-fixing for the 2Dmodel with radial symmetry
In this section, we use the front-tracking method and front-fixing method to simulate the 2D logis-
tic diffusion model with radial symmetry (2)–(6) with parameters (D,μ, a, b,H0)= (0.4, 10, 1, 1, 1),
U0 = cos(πr

2 ) and spatial size h= 0.00625. Figure 3 reveals that front-tracking method matches
well with the front-fixing method for the 2D logistic diffusion model with radial symmetry (2)–(6).
The numerical results here agree with the theoretical ones in [10], where it is shown that H(t) is
an increasing function and for large t, H(t) behaves like a linear function c∗t for some positive
constant c∗.

4.2. Numerical tests of the 2Dmodel with the level setmethod

4.2.1. Convergence of the level set method for the 2Dmodel with radial symmetry
Here we study 2D logistic diffusion model (26) by using the level set approach with parameter

(D,μ, a, b)= (0.4, 10, 1, 1); τ0 is a circle with radius 1 and U0 = 4 cos(π
√

x2+y2
2 ).

For the boundaries of the species, we use the dotted curve to show the simulated boundary of the
species, the solid circle is introduced to describe to what degree the boundary evolves like a circle.
The radius of the solid circle is the average distance between the intersect points of τ(t) with x-axis
and y-axis on the boundary and the origin, i.e.

r =
∑ √

x2 + y2

#of (x, y)

where (x, y) ∈ τ(t) are all the intersect points of τ(t) with x-axis and y-axis.
According to [11], the solution of Equation (2)–(6) is unique and radially symmetric. Figure 4

shows the evolution of U(t, x, y) and τ(t), where we can see that the solid circle matches exactly
with the dotted curve, which means that the boundary τ(t) keeps the geometry. And it can be easily
observed that U(t, x, y) has radial symmetry as U0.

We focus on the radius of the boundary τ(t), which we denote byH(t).U(t, r) = U(t, x, y) is used
to learn about the order of accuracy in space of the level set method.
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Figure 4. Disk.

Figure 5. The convergence of the level set method for the 2D model with radial symmetry.

The convergence test for the solution of u(r) at T= 0.1 and the front H(t) can be observed
from Figure 5 with different space sizes h= 0.025, h= 0.0125, h= 0.00625, h= 0.003125, and the
results are compared to the results of front tracking method with the same initial setup and step size
h= 0.003125. Figure 5 shows that the results of the level set method agree very nicely with the results
of the front tracking method, which means the three methods are consistent with each other.

In Table 3, the error (both L2 and L∞) and the order of convergence to the solution of the level
set method are examined, with final time T= 0.1. It reveals that the convergence orders for both the
solution u and the front H(t) are between 1 and 2.

4.3. Numerical tests of level setmethods for the 2Dmodel with different initial configuration

Example 4.1: In the 2D logistic diffusion model (26) with parameters (D,μ, a, b) = (4, 10, 1, 1), the
initial boundary τ0 is set to be an equilateral triangle which centres at the origin point (0, 0) with
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Table 3. Convergence analysis for the level set method.

Nx × Ny × Nt L2error Order L∞error Order

Accuracy test of U of the level set method
29×29×160 5.58e−03 9.29e−03
57×57×640 3.06e−03 0.86 5.01e−03 0.89
113×113×2560 1.40e−03 1.13 2.26e−03 1.15
225×225×10240 4.84e−04 1.54 7.79e−04 1.54
449×449×40960 Reference

Accuracy test of H of the level set method
29×29×160 4.19e−02 5.84e−02
57×57×640 2.01e−02 1.06 2.76e−02 1.08
113×113×2560 8.70e−03 1.20 1.19e−02 1.22
225×225×10240 2.91e−03 1.57 3.92e−03 1.60
449×449×40960 Reference

side-length 1. The initial value u0(x, y) and the initial level set function φ0(x, y) are set as follows:

u0(x, y) =
{
400(

√
3
2 − 1√

3
+ y)(

√
3x − y + 1√

3
)(−√

3x − y + 1√
3
), (x, y) ∈ �0,

0 (x, y) ∈ �c
0.

(42)

For (x, y) ∈ �0, we set

φ0(x, y) =
{

−min(
√
3
2 − 1√

3
+ y, (

√
3x − y + 1√

3
)/2, (−√

3x − y + 1√
3
)/2), (x, y) ∈ �0,

0 (x, y) ∈ τ0.
(43)

For (x, y) ∈ �
c
0, the magnitude of the signed distance φ0(x, y) is the smallest distance of (x, y) to sides

of the triangle, and the sign of φ0(x, y) is positive.
For the boundaries of the species, we use the dotted curve to show the simulated boundary of

the species and the triangle represents the initial boundary. Figure 6 shows the simulation of the
evolvement of the species andmoving boundaries along time with an equilateral triangle as the initial
boundary.

From Figure 6, we can see that the dotted curve evolves into a circle, and then propagate as a circle,
which also agrees with the theoretical results [12], where it is proved in Theorems 1.1 –1.3 that the
moving boundary for large time is a smooth closed manifold close to an enlarging sphere as time
increases.

Example 4.2: In the 2D logistic diffusion model (26) with parameters (D,μ, a, b) = (5, 10, 1, 1), the
initial boundary of the species τ0 is a rectangle with length= 1.2 and width= 1, centred at (0,0). And
the initial function u0(x, y) and the initial level set function φ0(x, y) are set as follows:

u0(x, y) =
{
200(0.5 − x)(0.5 + x)(0.6 − y)(0.6 + y), (x, y) ∈ �0,
0 (x, y) ∈ �c

0.
(44)

For (x, y) ∈ �0, we set

φ0(x, y) =
{

−min(0.5 − |x|, 0.6 − |y|), (x, y) ∈ �0,
0 (x, y) ∈ τ0.

(45)

For (x, y) ∈ �
c
0, we have

φ0(x, y) =

⎧⎪⎨
⎪⎩

√
(|x| − 0.5)2 + (|y| − 0.6)2, |x| > 0.5 and |y| > 0.6,

min(|y − 0.6|, |y + 0.6|), |x| ≤ 0.5,
min(|x − 0.5|, |x + 0.5|), |y| ≤ 0.6.

(46)
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Figure 6. The simulated evolution of u(x, y, t) and τ(t) with initial domain �0 of an equilateral triangle in 2D. The snapshots are
taken at the times t = 0,0.003,0.0425,0.1275,0.15,0.17, respectively.
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Figure 7. The simulated evolution of u(x, y, t) and τ(t) for the initial domain of a rectangle in 2D. The snapshots are taken at the
times t = 0,0.002,0.008,0.0375,0.0625,0.08, respectively.
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Figure 8. Annulus.

Figure 9. Annulus with a cut.

For the boundaries of the species, we use the dotted curve to show the simulated boundary of
the species and the rectangle represents the initial boundary. Figure 7 shows the spreading of u and
moving boundary along time with a rectangle as the initial boundary. It indicates that the boundary
evolves into a circle, and then propagates like a circle, as predicted by the theoretical result in [12].

Example 4.3: Herewe test the level setmethod for solving (26)with twoother different initial domain
setup: annulus (Figure 8) and Annulus with a cut (Figure 9). For the boundaries of the species, we
use the outer dotted curve to show the simulated boundary of the species and the inner dotted curve
represents the initial boundary. For all two different cases, the front will asymptotically evolve into
circles that correlates exactly with theoretical results in [12], which predicts that as time increases, the
bounded piece of the moving boundary will eventually disappear, and the outer moving boundary
will evolve into a smooth closed manifold getting closer and closer to an enlarging sphere as time
increases.



18 S. LIU ET AL.

Figure 10. The simulated evolution of u(x, y, t) and τ(t) for initial boundary a circle in 2D with an advection term. The snapshots
are taken at the times t = 0, 0.006, 0.025, 0.05, 0.075, 0.1, respectively.
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4.4. Numerical test of level setmethods for 2D advection–reaction–diffusionmodel

We consider a 2D advection–reaction–diffusion (ARD) model with a free boundary of the form

∂U
∂t

− D
(

∂2U
∂x2

+ ∂2U
∂y2

)
+ β

(
∂U
∂x

+ ∂U
∂y

)
= U(a − bU), t > 0, (x, y) ∈ �(t), (47)

together with the boundary conditions

U(t, ∂�(t)) = 0, t > 0, (48)

the Stefan condition

v(t, x, y) = μ|∇U(t, x, y)|n(t, x, y) = −μ∇U(t, x, y), t > 0, (x, y) ∈ ∂�(t), (49)

where v(t, x, y) andn(t, x, y) are, respectively, the velocity vector of the boundary point (x, y) ∈ ∂�(t)
and the unit outward normal of �(t) at (x, y) ∈ ∂�(t). The initial conditions are

�(0) = �0, U(0, x, y) = U0(x, y), (x, y) ∈ �0. (50)

The initial function U0(x, y) is assumed to satisfy (27).
In (47), the advection term β(∂U

∂x + ∂U
∂y ) is in the north-east direction. We may think of (47)

as describing the spreading of a flying insect species U affected by wind blowing to the north-east
direction during the spreading process.

In the 2D ARD model (47)–(50) with parameters (D,μ, a, b,β) = (10, 10, 1, 1, 50), the initial
boundary of the species τ0 is a circle with radius equals 1.5, centred at (0,0). And the initial value
u0(x, y) and the initial level set function φ0(x, y) are set as follows:

u0(x, y) =
{
6 cos(

√
x2 + y2π), (x, y) ∈ �0,

0, (x, y) ∈ �c
0,

(51)

φ0(x, y) = −(0.5 −
√
x2 + y2). (52)

Figure 10 shows the spreading ofU and themoving boundary of this ARDmodel as time increases,
where the dotted curve represents the simulated boundary of the species. In order to clearly reveal the
effect of the advection in the model, the initial boundary is indicated in the graph by the solid circle;
the free boundary clearly expands faster in the north-east direction and slower in the south-west
direction, due to the advection in the north-east direction.

5. Conclusion

In this paper, we have introduced a general numerical framework to efficiently solve a class of reac-
tion–diffusion equations with moving free boundaries. A front tracking algorithm is first introduced
for the 2D model with radial symmetry, which has been compared to a front-fixing method. The
consistency for these twomethods has been checked by several numerical examples. A level set frame-
work is later applied for more general 2D models to overcome the difficulty of handling complicated
topologically changes. All the proposed methods agree with each other through examination of an
example of the 2Dmodel with radial symmetry. The level set approach is also shown to be very robust
to handle different complicated geometries.

Since the level set method is very robust to handle topological changes, in a separate work [21],
we have extended level set approach to the systems of two competing species in which each species
has its own moving boundary. The front will become more complicated and more challenging once
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two moving fronts are tangled together. Moreover, extremely small time steps are usually required
when the system is very stiff. To overcome this difficulty, currently we are incorporating the implicit
integration factor (IIF)method [22] and its compact form (cIIF) [23] for such stiff systems. Themajor
computation for IIF or cIIF arises from the computation of the exponential of discretized matrices.
Due to the moving fronts, evaluation of the exponential of the discretized matrices is necessary for
each time step. We also plan to combine Krylov subspace [5] to further improve the efficiency.
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